Newer
Older
divorce-your-linux-admin / divorce_your_linux_admin.rst

Divorce Your Linux Admin

Package Management For Lusers

If you run Linux on your own machines, you're used to having root and doing what you jolly well like. But, if you've ever spent more than about 10 minutes in a large coporate IT environment, you learn pretty quickly that root is hard to get, it takes a ton of paperwork to get anything done, and you usually have to wait forever. I've actually had the experience of waiting for 6 weeks to get permission to install as symlink ... and I had root!

There is a good reason for this, of course. Security threats are very real, lawsuits are ominipresent, and the Geniuses In Charge (tm) are writing regulation and audit compliance rules that make root canals seem like fun. Information Security people may feel like they are the IRS of the business, but they perform an important and necessary task: Saying "No".

So ... is there a better way? Is there a way to eliminate the requirement for root in most day-to-day things we need to do as users and developers. Is there a way we can comply with the required corporte security constraints, but still run our own happy show? The answer is a qualified "Yes".

Some things do- and always will need root: Managing devices, storage, ulimits, and security configuration leap to mind. But, say, all you want is a newer version of java on your servers. Or suppose you want a package that isn't part of your standard OS load. vi is everywhere, but suppose you want to use emacs instead (as you should).

You could, of course, download the source for the programs you want, configure and compile them, and run them, say, out of your home directory. Oops ... standard IT corporate security practice is to never allow a compiler to exist on a production host. There are ways around this, but it's fairly painful to have to do that for every single package you may want. (If you don't think so, I encourage you to try and bootstrap the gcc compiler chain from scratch. It's a ton of fun. No, really, it is ...)

Wouldn't it be nice if we could implement package management in userland in a way that is repeatable, can be automated, and gives us control of our own universe without having to beg for root changes or have to wait for the vendor to release a new package. Well, Sparky, we have the techology to do just that.

It's worth mentioning that the approach outlined below is especially handy with cloud and on-demand computing. It makes automating your deploys pretty simple. It's also actually pretty handy on your own machines when you do have root. The less you use superuser, the less chance you'll screw something up.

Warning

What follows has been implemented on an experimental basis. It's been tested in only a very limited number of systems but seems to work well. However, you should do your own detailed testing before deploying this into a production environment. Failure to do so may result in broken systems, hallway snikering, hives, and being transferred to your new development shop in Adak, AK.

MacOS Rescues Linux

The approach we're going to describe got started in the Mac OSX world. Back when Apple finally came to their senses, and switched their OS to a Unix-base (FreeBSD 4.4), they only partly implemented the shell tools everyone had come to know and love. The brew project got spun up to allow any OSX user to install the command line applications they knew and loved from Unix. brew is essentially a userland package management system which can be run and modified without superuser power. Many of the brew packages (these days, perhaps all, I haven't checked) actually download a pre-compiled version under /usr/local.

This ended up being pretty popular with advanced Mac users. So much so, that a derivative project, linuxbrew, got spun up to take the Mac stuff, but apply it to Linux. That is, give the Linux user userland package management system. It too, has found success among the Linux literati.

But ... there is a fly in the ointment. When I first undertook this project, I thought I could just pick a directory on Linux machine and use linuxbrew to install what I wanted. No habla Senor Frog. Many Linux binaries are sensitive to where they are installed, where they can find their supporting libraries and a host of other things. So, if I install a binary with linuxbrew somewhere other than the default /home/linuxbrew, it's likely not going to work. And I wanted that to work. I wanted to have a way of creating a tools tree wherever I jolly well felt like putting it.

"So", sez me, "I'll just use linuxbrew to automate the download, configuration, compliation, and installation of all the packages." i.e. "I'll automate the build from source." (That roaring laughing you hear is coming from every Linux engineer who ever tried something like this.)

I will spare you sensitive readers the subsequent cursing, whining, begging, crying and caterwauling that ensured. Let's just say that making a position-dependent package management system work in a position-independent way is ... er, non-trivial. In fairness, it's not the fault of the linuxbrew people. They were super supportive and helpful with all this. A lot of the issues have to do with the packages themselves having embedded assumptions about where they can find tools during the compilation phase. That's right, the source code and configurations have hardwired assumptions about where they would find things like perl and make.

At this point, the whole process had taken me a few dozen hours and I was sufficiently enraged that I just had to figure out. As we'll see shortly, I think I finally go there. But, in the mean time ...

Note

If you write software, config files, makefiles, test cases, or any part of the software delivery ecosystem with hardwired paths to things emebedded in them, you are officially a big bozo. Not the fun kind with a red nose and big shoes either. The only hardwired path that's OK is /bin/sh on a shebang line. But if you do things like this:

#!/usr/bin/python

You should be sent to work 1st level phone support on the midnight shift in Somalia until you learn better. Grrrrrr.

This is the right way to do this is:

#!/usr/bin/env python

env can reliably be found there and it will "discover" where python happens to actually be installed on that machine, so long as it is in $PATH somewhere. Similarly, learn to use constructs like:

SED=`which sed`
$SED something
DATE=`which date`
DATE=${DATE:-"/bin/date"

In short, NEVER make assumptions where things are. Always discover it at configuration time.

Preview Of Coming Attractions

What I eventually (after many hours of whining, etc.) disovered, was that getting this to work required a number of key things:

  1. Everything has to be built from source in the directory location being targeted. The only exception is the brew program itself, which is position agnostic. So, if I want to build a tools tree under /my/fine/tools, then I have to clone linuxbrew into that directory and do the build from there.

  2. The initial build requires the OS compiler chain and related development tools to bootstrap up a minimal linuxbrew environment capable of compiling everything else. You can do this on your own machine (not recommended because you shouldn't be fidding around as root there), but a better way is to do it in a VM. In my case, I made it even simpler by doing everything in docker containers.

  3. Once you have a bootstrapped linuxbrew environment running - i.e., One that has a functioning gcc and supporting tool chain - you make a tar backup of it. You then untar that onto a machine that has (almost) no native OS development tools on it and do the remainder of the installations from there.

    It's "almost" because - due to the aforementioned dain bramaged open source packages, You have to have the OS copies of autoconfig, automake, perl, and make installed on your build machine. These open source packages just insist that perl is always to be found under /usr/bin, for example.

  1. When you're all done installing and configuring your linuxbrew environment, you just `tar`` it off somewhere safe. You can then untar it onto any other Linux machine (with a reasonably current kernel) so long as you do so at the same directory location under which it was built.

    This lends itself nicely to automated deploys via tools like tsshbatch or ``ansible`. You build a master tarball of your "standard" tools tree and then use automated deployment to put it everywhere.

Doing It The docker Way

Like I said, you can do this in a VM, but the step-by-step approach below uses docker containers which are easy to setup and tear down for testing.

Resources

Document Information