tundra authored on 18 Apr
README.md move nload into bootstrap phase, add comments to config variables in makefile 9 months ago
brewenvs first cut at complete makefile 9 months ago
makefile make sure pip gets updated at install time 6 months ago
README.md

Build Standard Tools

This is automation support for the linuxbrew-based tools procedure documented at:

https://www.tundraware.com/TechnicalNotes/Divorce-Your-Linux-Admin

How To Use The Makefile

This makefile handles both the bootstrapping and then the full release of a custom linuxbrew based toolset, installed at any location you wish (so long as you have write permission there).

Before doing anything, edit the variables as the top of the makefile to reflect where you want the built tarballs to be exported, where you intend to install the tools, what to build during the bootstrap phase, and what set of tools you want installed.

NOTE: The makefile assumes RedHat/CentOS style package management. That's because we run this inside of CentOS docker containers, even if we're working on debian or Ubuntu systems. You'll have to update the file if you use apt-get package management.

Release Versioning

Both the bootstrap and full build process create tarballs and rename the tools directory with a version stamp in the form, YYYYMMDD. The idea is to allow multiple verisons of your toolsets to exist under ${INSTALLDIR}. You simply create a symlink in that directory named ${TOOLS} to point to the version you want. This makes certain automation use cases with tsshbatch or ansible somewhat simpler.

HOWEVER, during the actual build process described here, it is important that the directory be named canonically. That is, it should be located and named where you intend to deploy it. The binaries care - a lot - about where to look for their libraries and such. So, for instance, if you are deploying to /foo/bar/tools, don't build it under /foo/bar/tools-20180324. You build under /foo/bar/tools. The release process will create a tarball that contains foo/bar/tools-YYYYMMDD which you can untar to other machines (under /foo/bar/). You can then either just rename it to tools, or create a symlink called tools that points to it.

This most likely bite you the first time you untar a bootstrap tarball to perform a full build. DAMHIKT.

Building The Bootstrap Image

  1. Log into your build machine, VM, ordockerimage.

  2. Make sure you have write permission to the installation directory.

  3. Make sure the native OS compiler tools are installed. Do not include the tools directories in your ${PATH} at this time. We want this phase of the build to be done entirely with system tools.

  4. Get the linuxbrew image:

    make getbrew

  5. Build the bootstrap image:

    make bootstrap-build

  6. Build a release tarball and export it:

    make bootstrap-release

  7. Cleanup:

    make clean

Building The Full Tools Set

  1. Log into your build machine, VM, ordockerimage. Make sure this machine does not have native OS compilers and development tools installed and/or in ${PATH}! We want to use only the compiler and tools created in the previous step. Docker containers are handy here: One for the bootstrap build, another for the self compiling full tools build.

  2. Un-tar the bootstrap tarball created above into the proper location. Recall that this was saved with a date revision stamp. So, before proceeding, we have to:

    cd ${INSTALLDIR} && mv -v ${TOOLS}-YYYYMMDD ${TOOLS}

  3. Setup the required environment variables:

    . brewenv

  4. Make sure ${MYTOOLS} and ${PIPMODULES} include all the packages you want.

  5. Build the full tool set using the bootstrapped compiler we just built:

    make full-build

  6. Export it for installation elsewhere:

    make full-release

  7. Cleanup:

    make clean

Installing The Tools

We've just created a tarball that has all the tools we want precompiled and ready for distribution. We just untar the full tools tarball onto any other machine. The only restrictions are:

  1. We must un-tar so that the tools directory ends up in the same location in the filesystem as where it was built. The binaries created above make assumptions about where to find their libraries and other dependencies. So, if we built the tools under:

    /opt/mydir/tools

    Every installation on other machines must also install them there (and be added to $(PATH} as described in brewenv).

    Recall that this procedure actually creates the tools directory as:

    /opt/mydir/tools-YYYYMMDD.

    In this example, you could either symlink tools to that directory or just rename the directory accordingly.

  2. The build- and target machines must have reasonably close kernel versions. That's because the bootstrap phase makes use of native OS header files that are kernel-dependent. If, say, you try to build this on a CentOS 7 instance, but then attempt to deploy to CentOS 5, expect problems. Always build your deploy image on an OS that is substantially the same as your targets. Again, docker is your friend here.

The brewenv File

The brewenv file documents the environment variables that need to be set in order to access your installed binaries and support files. You may find this useful when doing the full build. You certainly will want these variables set when running a final installation of your tools.

Just be sure to edit it and change TOOLSDIR="/opt/TundraWare/tools" to wherever your tools installation actually lives.